APPLICATION OF E. COLI ASPARTATE TRANSAMINASE TO AMINO ACID SYNTHESIS

Jack E. Baldwin^{a*}, Robert L. Dyer^b, Si C. Ng^a, Andrew J. Pratt^a and Mark A. Russell^a

 a Dyson Perrins Laboratory, University of Oxford, South Parks Road, OXFORD OX1 3QY.
b Searle Research and Development, Division of G.D. Searle & Co. Ltd., P.O. Box 53, Lane End Road, High Wycombe, Buckinghamshire HP12 4HL.

ABSTRACT: The kinetics and synthetic utility of the conversion of α -keto acids into L- α -amino acids using cloned <u>E.coli</u> Aspartate transaminase have been evaluated.

The rapid and enantioselective synthesis of α -amino acids has long attracted attention from synthetic chemists¹. However whilst fermentation has been used for academic and industrial production of amino acids², no single <u>in vitro</u> enzymatic system is available for preparation of a wide range of L- α -amino acids. Herein is outlined a simple and efficient procedure for the preparation of a variety of aromatic and aliphatic L- α -amino-acids from readily available α -keto acids³ using cloned <u>E.coli</u> Aspartate Transaminase.

E.coli Aspartate Transaminase has been cloned^{*} and is available in large quantities. In order to evaluate the synthetic potential of this enzyme, its substrate specificity was investigated. Maximum velocity (V_{max}) and Michaelis constant (K_m) data^{\$} were determined using a NADH/Malate dehydrogenase coupled U.V. spectroscopic assay⁶ (Scheme 1). V_{max}/K_m values, a measure of the catalytic efficiency of each substrate (1), are given in Table 1. SCHEME 1

The enzyme kinetics indicated that keto acids of a wide range of structural types are satisfactory enzyme substrates and so preparative scale syntheses (1 mmol or greater) of both aromatic and aliphatic amino acids were carried out. 3-Arylpyruvic acid derivatives (1a-e) [close analogues of the native substrate phenylpyruvic acid (1a)] are readily converted into the corresponding L- α -amino acids (2a-e) but in addition the conversion of alkyl substituted α -keto acids (1f-1) could also be accomplished by increasing the enzyme concentration by 10-15 fold. The facility of the latter conversions is due to the availability of cloned enzymes in large quantities. The yields and optical purities (all greater than 90% ee) of amino acids 2 (a-e & h-l) synthesised enzymatically are given in Table 1. Since the large quantities of cloned <u>E.coli</u> Aspartate transaminase available allow efficient utilisation of α -keto-acids previously not thought to be substrates, this enzyme is an effective catalyst for the mild enantioselective preparation of a wide range of L- α -amino acids.

TABLE	1*
-------	----

Substrate R (1)		к _m S (mM)	V _{max} (µmolmin ⁻¹)	V _{max/Km} (1min ⁻¹ x10 ³)	Enzyme (kU1 ⁻¹)	Time (h)	Yield %	[α] _D
a)	Ph	4.3	0.43	0.1	20	12	84	-34.2
b)	p-HOC ₆ H ₄	2.0	0.78	0.39	30	4	80	-10.9 (-10.2)
c)	o-MeC ₆ H ₄	6.8	0.13	0.02	40	12	30	-16.1
d)	2-Napthy1	1.0	0.091	0.09				
e)	3-Indole	1.4	0.28	0.2	40	18	72	-30.1 (-31.5)
f)	HO2C	0.37	1.3	3.5				
g)	HO ₂ CCH ₂	7.5	0.05	0.007				
h)	Н	22	0.26	0.001	400	18	35	+13.4 (+14)
i)	Me	20	4.5 x 10	³ 0.0007	400	18	37	+19.6 (+20.4)
j)	MeCH ₂	21	9.2 x 10 ⁻	° 0.0004	400	18	32	+23.0 (+24+/-2)
k)	Me₂CH	19	6.9 x 10	³ 0.0036	200	18	40	+11.8 (+12.3)
1)	MeSCH ₂	13	0.1	0.008	100	12	58	+24.8 (+23.4)

*Optical rotations were obtained using conditions described in <u>Catalogue Handbook of Fine</u> <u>Chemicals</u>, Aldrich, 1986-7. Literature values are in brackets. <u>Either Aspartate (2F) or Glutamate (2g) can be used as the amino group donor.</u>

Typical procedure:

Keto-acid (1) (1 mmol) and L-Glutamic acid (1.5 mmol) were dissolved in water (20 ml) at 40° C and the pH was adjusted to <u>ca</u>.8 using 1M sodium hydroxide and hydrochloric acid solutions. To this solution pyridoxal phosphate (5 mg/1) and Aspartate transminase (see Table 1) were added. After <u>ca</u>. 12h purification was accomplished by; (1) Addition of acetone (70% v/v) to precipitate the protein. (ii) Supernatant adjusted to pH <u>ca</u> 3.3, and eluted from alumina column with water (to remove excess Glutamic acid). (iii) Ton exchange chromatography on Dowex 50 WX 8-100, eluting with 1M aq. pyridine to produce pure L- α -amino acid (2).

We thank G.D. Searle for funding to S.C.N. and M.A.R. and Mr. S. Kerry of G.D. Searle for supplies of purified <u>E.coli</u> Aspartate transaminase.

S Aspartate transaminase obeys "Ping-Pong, Bi-Bi" kinetics⁵. Parameters were calculated by Lineweaver-Burke analysis:

Rate V = $V_{max} / \{1 + K_m A / [A] + K_m S / [S]\}$

where V_{max} is the maximal velocity at saturating levels of both substrates, [A] is the concentration of L-Aspartic acid, [S] is the concentration of keto acid (1) and K_m^A and K_m^S are Michaelis-Menten constants

REFERENCES

1. U. Schollkopf and H-J. Neubauer, Synthesis, 1982, 861.

- R. Fitzi and D. Seebach, Ang.Chem.Int.Edn. Engl., 1986, 25, 345.
- 2. <u>The Microbial production of Amino Acids</u>, K. Yamada, S. Kinoshita, T. Tsunoda and K. Aida eds. 1972, Halstead Press.
- J. Anatol and A. Medete, <u>Synthesis</u>, 1971, 538. <u>Biochemische.Z.</u>, 1911, <u>35</u>, 72. <u>R.L. Dyer</u>, Personal communication.
- I.G. Fotheringham, S.A. Dacey, P.P. Taylor, T.J. Smith, M.G. Hunter, M.E. Finlay, S.B. Primrose, D.M. Parker and R.M. Edwards, <u>Biochem.J.</u>, 1986, <u>234</u>, 593.
- 5. A.E. Braunstein in <u>The Enzymes, IX</u>, 424-429, P.D. Boyer ed., 3rd Edn., 1973, Academic Press.
- 6. C.P. Henson and W.W. Cleland, Biochem., 1964, 3, 338.
- A.C. Stoner and A. Cornish-Bowden, Biochem. J., 1974, 141, 205.
- 7. E. Turba and M. Richter, Ber. 1942, 75, 340.

(Received in UK 14 May 1987)